If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8^2+b^2=9^2
We move all terms to the left:
8^2+b^2-(9^2)=0
We add all the numbers together, and all the variables
b^2-17=0
a = 1; b = 0; c = -17;
Δ = b2-4ac
Δ = 02-4·1·(-17)
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{17}}{2*1}=\frac{0-2\sqrt{17}}{2} =-\frac{2\sqrt{17}}{2} =-\sqrt{17} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{17}}{2*1}=\frac{0+2\sqrt{17}}{2} =\frac{2\sqrt{17}}{2} =\sqrt{17} $
| m-6÷4=15 | | 32.67=6g+3.93 | | (x+5)(2x-4)=120 | | 6^2+b^2=7^2 | | 1/3*f=2/9 | | 6^2+b^2=8^2 | | 3^2+b^2=8^2 | | 32.24=7g+3.65 | | 4(x=12)-5=79 | | 7^2+b^2=8^2 | | 75^2+b^2=85^2 | | 11.75=2g+3.51 | | 18^2+b^2=82^2 | | 18=6/7w | | 24^2+b^2=26 | | -4(r+2)=-70 | | 77^2+b^2=85^2 | | 7.3y-5.18=51.0 | | 266=32-u | | 89-w=214 | | -5(r+8)=-77 | | 4/r=7/5 | | 24^2+b^2=40^2 | | 2=v+3 | | 40^2+b^2=58^2 | | 12^2+b^2=13^2 | | 84^2+b^2=91^2 | | 2x+20=x+23 | | 5a-7=4a-4 | | 3(2b+60=(4b-8 | | d=(5.004)=2.826 | | 12/3+3n=4/5+15 |